# What Makes An Arithmetic Sequence? (Perfect answer)

An arithmetic sequence is a sequence (list of numbers) that has a common difference (a positive or negative constant) between the consecutive terms.

## What defines an arithmetic sequence?

An arithmetic sequence is a sequence where each term increases by adding/subtracting some constant k. This is in contrast to a geometric sequence where each term increases by dividing/multiplying some constant k.

## How do you know if a sequence is arithmetic?

Definition and Basic Examples of Arithmetic Sequence. An arithmetic sequence is a list of numbers with a definite pattern. If you take any number in the sequence then subtract it by the previous one, and the result is always the same or constant then it is an arithmetic sequence.

## What are the characteristics of an arithmetic sequence?

arithmetic sequence: An ordered list of numbers wherein the difference between the consecutive terms is constant. infinite: Boundless, endless, without end or limits; innumerable.

## What makes an arithmetic sequence from a geometric sequence?

An arithmetic sequence has a constant difference between each consecutive pair of terms. A geometric sequence has a constant ratio between each pair of consecutive terms.

## What makes an arithmetic sequence different from A?

Arithmetic vs Geometric Sequence The difference between Arithmetic and Geometric Sequence is that while an arithmetic sequence has the difference between its two consecutive terms remains constant, a geometric sequence has the ratio between its two consecutive terms remains constant.

## How do arithmetic series differ from arithmetic sequence?

An arithmetic sequence is a sequence where the difference d between successive terms is constant. The general term of an arithmetic sequence can be written in terms of its first term a1, common difference d, and index n as follows: an=a1+(n−1)d. An arithmetic series is the sum of the terms of an arithmetic sequence.

## What is the common difference of the arithmetic sequence?

The common difference is the value between each successive number in an arithmetic sequence. Therefore, the formula to find the common difference of an arithmetic sequence is: d = a(n) – a(n – 1), where a(n) is the last term in the sequence, and a(n – 1) is the previous term in the sequence.

## What are the 5 examples of arithmetic sequence?

= 3, 6, 9, 12,15,. A few more examples of an arithmetic sequence are: 5, 8, 11, 14, 80, 75, 70, 65, 60,

## How do you tell the difference between arithmetic and geometric?

An arithmetic Sequence is a set of numbers in which each new phrase differs from the previous term by a fixed amount. Geometric Sequence is a series of integers in which each element after the first is obtained by multiplying the preceding number by a constant factor.

## Arithmetic Sequences and Sums

A sequence is a collection of items (typically numbers) that are arranged in a specific order. Each number in the sequence is referred to as aterm (or “element” or “member” in certain cases); for additional information, see Sequences and Series.

## Arithmetic Sequence

An Arithmetic Sequence is characterized by the fact that the difference between one term and the next is a constant. In other words, we just increase the value by the same amount each time. endlessly.

### Example:

1, 4, 7, 10, 13, 16, 19, 22, and 25 are the numbers 1 through 25. Each number in this series has a three-digit gap between them. Each time the pattern is repeated, the last number is increased by three, as seen below: As a general rule, we could write an arithmetic series along the lines of

• There are two words: Ais the first term, and dis is the difference between the two terms (sometimes known as the “common difference”).

### Example: (continued)

1, 4, 7, 10, 13, 16, 19, 22, and 25 are the numbers 1 through 25. Has:

• 1, 4, 7, 10, 13, 16, 19, 22, and 25 are the first four digits of the number 1. Has:

And this is what we get:

### Rule

It is possible to define an Arithmetic Sequence as a rule:x n= a + d(n1) (We use “n1” since it is not used in the first term of the sequence).

### Example: Write a rule, and calculate the 9th term, for this Arithmetic Sequence:

3, 8, 13, 18, 23, 28, 33, and 38 are the numbers three, eight, thirteen, and eighteen. Each number in this sequence has a five-point gap between them. The values ofaanddare as follows:

• A = 3 (the first term)
• D = 5 (the “common difference”)
• A = 3 (the first term).

Making use of the Arithmetic Sequencerule, we can see that_xn= a + d(n1)= 3 + 5(n1)= 3 + 3 + 5n 5 = 5n 2 xn= a + d(n1) = 3 + 3 + 3 + 5n n= 3 + 3 + 3 As a result, the ninth term is:x 9= 5 9 2= 43 Is that what you’re saying? Take a look for yourself! Arithmetic Sequences (also known as Arithmetic Progressions (A.P.’s)) are a type of arithmetic progression.

## Advanced Topic: Summing an Arithmetic Series

To summarize the terms of this arithmetic sequence:a + (a+d) + (a+2d) + (a+3d) + (a+4d) + (a+5d) + (a+6d) + (a+7d) + (a+8d) + (a+9d) + (a+9d) + (a+9d) + (a+9d) + (a+9d) + (a+9d) + ( make use of the following formula: What exactly is that amusing symbol? It is referred to as The Sigma Notation is a type of notation that is used to represent a sigma function. Additionally, the starting and finishing values are displayed below and above it: “Sum upnwherengoes from 1 to 4,” the text states. 10 is the correct answer.

### Example: Add up the first 10 terms of the arithmetic sequence:

The values ofa,dandnare as follows:

• In this equation, A = 1 represents the first term, d = 3 represents the “common difference” between terms, and n = 10 represents the number of terms to add up.

As a result, the equation becomes:= 5(2+93) = 5(29) = 145 Check it out yourself: why don’t you sum up all of the phrases and see whether it comes out to 145?

## Footnote: Why Does the Formula Work?

Let’s take a look at why the formula works because we’ll be employing an unusual “technique” that’s worth understanding. First, we’ll refer to the entire total as “S”: S = a + (a + d) +. + (a + (n2)d) +(a + (n1)d) + (a + (n2)d) + (a + (n1)d) + (a + (n2)d) + (a + (n1)d) + (a + (n1)d) + (a + (n2)d) + (a + (n1)d) + (a + (n1)d) + (a + (n1)d) + After that, rewrite S in the opposite order: S = (a + (n1)d)+ (a + (n2)d)+. +(a + d)+a. +(a + d)+a. +(a + d)+a. Now, term by phrase, add these two together:

 S = a + (a+d) + . + (a + (n-2)d) + (a + (n-1)d) S = (a + (n-1)d) + (a + (n-2)d) + . + (a + d) + a 2S = (2a + (n-1)d) + (2a + (n-1)d) + . + (2a + (n-1)d) + (2a + (n-1)d)

Each and every term is the same!

Furthermore, there are “n” of them. 2S = n (2a + (n1)d) = n (2a + (n1)d) Now, we can simply divide by two to obtain the following result: The function S = (n/2) (2a + (n1)d) is defined as This is the formula we’ve come up with:

## Arithmetic Sequences

• Calculate the common difference between two arithmetic sequences
• Make a list of the terms in an arithmetic sequence
• When dealing with an arithmetic series, use a recursive formula. When dealing with an arithmetic series, use an explicit formula.
You might be interested:  What Is The 32Nd Term Of The Arithmetic Sequence Where A1 = −31 And A9 = −119? (Solution found)

Large purchases, such as computers and automobiles, are frequently made by businesses for their own use. For taxation reasons, the book-value of these supplies diminishes with each passing year. Depreciation is the term used to describe this decline in value. Depreciation may be calculated in several ways, one of which is straight-line depreciation, which means that the value of the asset drops by the same amount each year. Consider the case of a lady who decides to start her own modest contracting firm.

She expects to be able to sell the truck for \$8,000 after five years, according to her estimations.

The vehicle will be worth \$21,600 after the first year, \$18,200 after two years, \$14,800 after three years, \$11,400 after four years, and \$8,000 at the end of five years, according to the aforementioned calculations.

## Terms of an Arithmetic Sequence

Because the values of the vehicle in the example fluctuate by a fixed amount each year, they constitute an anarithmetic sequence in the example. Every term grows or decreases by the same constant amount, which is referred to as the common difference of the sequence. –3,400 is the common difference between the two sequences in this case. Another example of an arithmetic series may be seen in the sequence below. In this situation, the constant difference is three times more than one. You may take any phrase from the series and multiply it by three to discover the next term.

### A General Note: Arithmetic Sequence

When two successive words are added together, the difference between them is a constant. The common difference is the name given to this constant. If is the initial term of an arithmetic series anddis the common difference, the sequence will be as follows:left right=left , +d, +2d, +3d,.left right=left , +d, +2d, +3d,.right

### Example: Finding Common Differences

An anarithmetic sequence is a series that has the characteristic that the difference between any two consecutive words is always the same. The term for this constant is the “common difference. ” For example, if is the initial term of an arithmetic series and d is the common difference, the sequence will be as follows:left = right=left = right=left = left = right=left = right=left = right=left

### QA

No. As long as we know that the sequence is arithmetic, we may take any one term from it and subtract it from the following term to determine the common difference.

### Try It

Is the provided sequence a logical sequence? If this is the case, identify the common difference. left

### Try It

The sequence you’ve provided me is arithmetic. Identify the common point of disagreement if this is the situation. left

### Writing Terms of Arithmetic Sequences

After recognizing an arithmetic sequence, we can determine the terms if we are provided the first term as well as the common difference between the two terms. The terms may be discovered by starting with the first term and repeatedly adding the common difference to the end of the list.

Furthermore, any term may be obtained by putting the values ofnanddin into the formula below, which can be found in the table below. +left(n – 1)d +left(n – 1)d +left(n – 1)d

### How To: Given the first term and the common difference of an arithmetic sequence, find the first several terms.

1. To determine the second term, add the common difference to the first term
2. And so on. To determine the third term, add the common difference to the second term
3. This will give you the third term. Make sure to keep going until you’ve found all of the needed keywords
4. Create a list of words separated by commas and enclosed inside brackets

### Example: Writing Terms of Arithmetic Sequences

Fill in the blanks with the first five terms of the arithmetic sequence beginning with_ =17 andd=-3.

### Try It

List the first five terms of the arithmetic series beginning with_ =1 and ending with_ =5 and d=5.

### How To: Given any the first term and any other term in an arithmetic sequence, find a given term.

1. In order to solve ford, substitute the values provided for , ,ninto the formula = +left(n – 1right)d
2. This will give you the answer ford. Calculate the value of a given term by substituting the necessary values for , n, anddinto the formula = +left(n – 1right)d.

### Example: Writing Terms of Arithmetic Sequences

Find_ if_ =8 and_ =14 are provided.

### Try It

Suppose_ =8 and_ =14 are given, what is the result?

## Formulas for Arithmetic Sequences

It is possible to think of anarithmetic sequence as a function on the domain of natural numbers; it is a linear function since the rate of change remains constant throughout the series. The constant rate of change, often known as the slope of the function, is the most frequently seen difference. If we know the slope and the vertical intercept of a linear function, we can create the function. = +dleft = +dright For the -intercept of the function, we may take the common difference from the first term in the sequence and remove it from the result.

• Considering that the average difference is 50, the series represents a linear function with an associated slope of 50.
• You may also get the they-intercept by graphing the function and calculating the point at which a line connecting the points would intersect the vertical axis, as shown in the example.
• When working with sequences, we substitute _instead of y and ninstead of n.
• Using 50 as the slope and 250 as the vertical intercept, we arrive at this equation: = -50n plus 250 To create an explicit formula for an arithmetic series, we do not need to identify the vertical intercept of the sequence.

### A General Note: Explicit Formula for an Arithmetic Sequence

For the textterm of an arithmetic sequence, the formula = +dleft can be used to express it explicitly.

### How To: Given the first several terms for an arithmetic sequence, write an explicit formula.

1. Find the common difference between the two sentences, – To solve for = +dleft(n – 1right), substitute the common difference and the first term into the equation

### Example: Writing then th Term Explicit Formula for an Arithmetic Sequence

Create an explicit formula for the arithmetic series using the following symbols: left 12 text 22 text 32 text 42 text right

### Try It

For the arithmetic series that follows, provide an explicit formula for it. left With the use of a recursive formula, several arithmetic sequences may be defined in terms of the preceding term. The formula contains an algebraic procedure that may be used to determine the terms of the series. We can discover the next term in an arithmetic sequence by utilizing a function of the term that came before it using a recursive formula. In each term, the previous term is multiplied by the common difference, and so on.

The initial term in every recursive formula must be specified, just as it is with any other formula.

### A General Note: Recursive Formula for an Arithmetic Sequence

In the case of an arithmetic sequence with common differenced, the recursive formula is as follows: the beginning of the sentence = +dnge 2 the finish of the sentence

### How To: Given an arithmetic sequence, write its recursive formula.

1. To discover the common difference between two terms, subtract any phrase from the succeeding term. In the recursive formula for arithmetic sequences, start with the initial term and substitute the common difference

### Example: Writing a Recursive Formula for an Arithmetic Sequence

Write a recursive formula for the arithmetic series in the following format: left

### How To: Do we have to subtract the first term from the second term to find the common difference?

No. We can take any phrase in the sequence and remove it from the term after it. Generally speaking, though, it is more customary to subtract the first from the second term since it is frequently the quickest and most straightforward technique of determining the common difference.

### Try It

Create a recursive formula for the arithmetic sequence using the information provided. left

### Find the Number of Terms in an Arithmetic Sequence

When determining the number of terms in a finite arithmetic sequence, explicit formulas can be employed to make the determination. Finding the common difference and determining the number of times the common difference must be added to the first term in order to produce the last term of the sequence are both necessary steps.

### How To: Given the first three terms and the last term of a finite arithmetic sequence, find the total number of terms.

1. Find the common differences between the two
2. To solve for = +dleft(n – 1right), substitute the common difference and the first term into the equation Fill in the blanks with the final word from and solve forn

### Example: Finding the Number of Terms in a Finite Arithmetic Sequence

The number of terms in the infinite arithmetic sequence is to be determined. left

### Try It

The number of terms in the finite arithmetic sequence has to be determined. 11 text 16 text. text 56 right 11 text 16 text 16 text 56 text 56 text 56 Following that, we’ll go over some of the concepts that have been introduced so far concerning arithmetic sequences in the video lesson that comes after that.

## Solving Application Problems with Arithmetic Sequences

In many application difficulties, it is frequently preferable to begin with the term instead of_ as an introductory phrase. When solving these problems, we make a little modification to the explicit formula to account for the change in beginning terms. The following is the formula that we use: = +dn = = +dn

You might be interested:  How To Improve Arithmetic Skills? (Perfect answer)

### Example: Solving Application Problems with Arithmetic Sequences

In many application issues, it is typically preferable to begin with the term instead of_ as an initial condition. When solving these problems, we make a little modification to the explicit formula to account for the variation in beginning terms. The following is the formula that we employ: # # # # # # # # # # # # # # # # # # #

1. Create a method for calculating the child’s weekly stipend over the course of a year
2. What will be the child’s allowance when he reaches the age of sixteen

### Try It

A lady chooses to go for a 10-minute run every day this week, with the goal of increasing the length of her daily exercise by 4 minutes each week after that. Create a formula to predict the timing of her run after n weeks has passed. In eight weeks, how long will her daily run last on average?

## Key Equations

 recursive formula for nth term of an arithmetic sequence _ = _ +d textnge 2 explicit formula for nth term of an arithmetic sequence _ = _ +dleft(n – 1right)

## Key Concepts

• An arithmetic sequence is a series in which the difference between any two successive terms is a constant
• An example would be The common difference is defined as the constant that exists between two successive terms. It is the number added to any one phrase in an arithmetic sequence that creates the succeeding term that is known as the common difference. The terms of an arithmetic series can be discovered by starting with the first term and repeatedly adding the common difference
• A recursive formula for an arithmetic sequence with common differencedis provided by = +d,nge 2
• A recursive formula for an arithmetic sequence with common differencedis given by = +d,nge 2
• As with any recursive formula, the first term in the series must be specified
• Otherwise, the formula will fail. An explicit formula for an arithmetic sequence with common differenced is provided by = +dleft(n – 1right)
• An example of this formula is = +dleft(n – 1right)
• When determining the number of words in a sequence, it is possible to apply an explicit formula. In application situations, we may modify the explicit formula to = +dn, which is a somewhat different formula.

## Glossary

Arithmetic sequencea sequence in which the difference between any two consecutive terms is a constantcommon difference is a series in which the difference between any two consecutive terms is a constant an arithmetic series is the difference between any two consecutive words in the sequence

## Arithmetic Sequences and Series

An arithmetic sequence is a set of integers in which the difference between the words that follow is always the same as its predecessor.

### Learning Objectives

Make a calculation for the nth term of an arithmetic sequence and then define the characteristics of arithmetic sequences.

### Key Takeaways

• When the common differenced is used, the behavior of the arithmetic sequence is determined. Arithmetic sequences may be either limited or infinite in length.

#### Key Terms

• Arithmetic sequence: An ordered list of numbers in which the difference between the subsequent terms is constant
• Endless: An ordered list of numbers in which the difference between the consecutive terms is infinite
• Infinite, unending, without beginning or end
• Limitless
• Innumerable

For example, an arithmetic progression or arithmetic sequence is a succession of integers in which the difference between the following terms is always the same as the difference between the previous terms. A common difference of 2 may be found in the arithmetic sequence 5, 7, 9, 11, 13, cdots, which is an example of an arithmetic sequence.

• 1: The initial term in the series
• D: The difference between the common differences of consecutive terms
• A 1: a n: Then the nth term in the series.

The behavior of the arithmetic sequence is determined by the common differenced arithmetic sequence. If the common difference,d, is the following:

• Positively, the sequence will continue to develop towards infinity (+infty). If the sequence is negative, it will regress towards negative infinity (-infty)
• If it is positive, it will regress towards positive infinity (-infty).

It should be noted that the first term in the series can be thought of asa 1+0cdot d, the second term can be thought of asa 1+1cdot d, and the third term can be thought of asa 1+2cdot d, and therefore the following equation givesa n:a n In the equation a n= a 1+(n1)cdot D Of course, one may always type down each term until one has the term desired—but if one need the 50th term, this can be time-consuming and inefficient.

## Arithmetic Sequences

In mathematics, an arithmetic sequence is a succession of integers in which the value of each number grows or decreases by a fixed amount each term. When an arithmetic sequence has n terms, we may construct a formula for each term in the form fn+c, where d is the common difference. Once you’ve determined the common difference, you can calculate the value ofcby substituting 1fornand the first term in the series fora1 into the equation. Example 1: The arithmetic sequence 1,5,9,13,17,21,25 is an arithmetic series with a common difference of four.

1. For the thenthterm, we substituten=1,a1=1andd=4inan=dn+cto findc, which is the formula for thenthterm.
2. As an example, the arithmetic sequence 12-9-6-3-0-3-6-0 is an arithmetic series with a common difference of three.
3. It is important to note that, because the series is decreasing, the common difference is a negative number.) To determine the next3 terms, we just keep subtracting3: 6 3=9 9 3=12 12 3=15 6 3=9 9 3=12 12 3=15 As a result, the next three terms are 9, 12, and 15.
4. As a result, the formula for the fifteenth term in this series isan=3n+15.
5. 3: The number series 2,3,5,8,12,17,23,.
6. Differencea2 is 1, but the following differencea3 is 2, and the differencea4 is 3.
7. Geometric sequences are another type of sequence.

## 6.2: Arithmetic and Geometric Sequences

Arithmetic sequences and geometric sequences are two forms of mathematical sequences that are commonly encountered. In an arithmetic sequence, there is a constant difference between each subsequent pair of words in the sequence. There are some parallels between this and linear functions of the type (y=m x+b). Among any pair of subsequent words in a geometric series, there is a constant ratio between them. This would have the effect of a constant multiplier being applied to the data. Examples The Arithmetic Sequence is as follows: Take note that the constant difference in this case is 6.

For the n-th term, one method is to use as the coefficient the constant difference between the two terms: (a_ =6n+?).

We may state the following about the sequence: (a_ =6 n-1); (a_ =6 n-1); (a_ =6 n-1); The following is an example of a formula that you can memorize: Any integer sequence with a constant difference (d) is stated as follows: (a_ =a_ +(n-1) d) = (a_ =a_ +(n-1) d) = (a_ =a_ +(n-1) d) It’s important to note that if we use the values from our example, we receive the same result as we did before: (a_ =a_ +(n-1) d)(a_ =5, d=6)(a_ =5, d=6)(a_ =5, d=6) As a result, (a_ +(n-1) d=5+(n-1) * 6=5+6 n-6=6 n-1), or (a_ =6 n-1), or (a_ =6 n-1) A negative integer represents the constant difference when the terms of an arithmetic sequence are growing smaller as time goes on.

• (a_ =-5 n+29) (a_ =-5 n+29) (a_ =-5 n+29) Sequence of Geometric Shapes With geometric sequences, the constant multiplier remains constant throughout the whole series.
• Unless the multiplier is less than (1,) then the terms will get more tiny.
• Similarly, if the terms are becoming smaller, the multiplier would be in the denominator.
• The exercises are as follows: (a_ =frac) or (a_ =frac) or (a_ =50 *left(fracright)) and so on.
• If the problem involves arithmetic, find out what the constant difference is.

## What is an Arithmetic Sequence?

Sequences of numbers are useful in algebra because they allow you to see what occurs when something keeps becoming larger or smaller over time. The common difference, which is the difference between one number and the next number in the sequence, is the defining characteristic of an arithmetic sequence. This difference is a constant value in arithmetic sequences, and it can be either positive or negative in nature. Consequently, an arithmetic sequence continues to grow or shrink by a defined amount each time a new number is added to the list of numbers that make up the sequence is added to it.

#### TL;DR (Too Long; Didn’t Read)

As defined by the Common Difference formula, an arithmetic sequence is a list of integers in which consecutive entries differ by the same amount, called the common difference. Whenever the common difference is positive, the sequence continues to grow by a predetermined amount, and when it is negative, the series begins to shrink. The geometric series, in which terms differ by a common factor, and the Fibonacci sequence, in which each number is the sum of the two numbers before it, are two more typical sequences that might be encountered.

## How an Arithmetic Sequence Works

There are three elements that form an arithmetic series: a starting number, a common difference, and the number of words in the sequence. For example, the first twelve terms of an arithmetic series with a common difference of three and five terms are 12, 15, 18, 21, and 24. A declining series starting with the number 3 has a common difference of 2 and six phrases, and it is an example of a decreasing sequence. This series is composed of the numbers 3, 1, 1, 3, 5, and 7. There is also the possibility of an unlimited number of terms in arithmetic sequences.

You might be interested:  What Is Arithmetic Density Ap Human Geography? (Best solution)

## Arithmetic Mean

A matching series to an arithmetic sequence is a series that sums all of the terms in the sequence. When the terms are put together and the total is divided by the total number of terms, the result is the arithmetic mean or the mean of the sum of the terms. The arithmetic mean may be calculated using the formula text = frac n text. The observation that when the first and last terms of an arithmetic sequence are added, the total is the same as when the second and next to last terms are added, or when the third and third to last terms are added, provides a simple method of computing the mean of an arithmetic series.

The mean of an arithmetic sequence is calculated by dividing the total by the number of terms in the sequence; hence, the mean of an arithmetic sequence is half the sum of the first and final terms.

Instead, by restricting the total to a specific number of items, it is possible to find the mean of a partial sum. It is possible to compute the partial sum and its mean in the same manner as for a non-infinite sequence in this situation.

## Other Types of Sequences

Observations from experiments or measurements of natural occurrences are frequently used to create numerical sequences. Such sequences can be made up of random numbers, although they are more typically made up of arithmetic or other ordered lists of numbers than random numbers. Geometric sequences, as opposed to arithmetic sequences, vary in that they share a common component rather than a common difference in their composition. To avoid the repetition of the same number being added or deleted for each new phrase, a number is multiplied or divided for each new term that is added.

Other sequences are governed by whole distinct sets of laws.

The numbers are as follows: 1, 1, 2, 3, 5, 8, and so on.

Arithmetic sequences are straightforward, yet they have a variety of practical applications.

## Arithmetic & Geometric Sequences

The arithmetic and geometric sequences are the two most straightforward types of sequences to work with. An arithmetic sequence progresses from one term to the next by adding (or removing) the same value on each successive term. For example, the numbers 2, 5, 8, 11, 14,.are arithmetic because each step adds three; while the numbers 7, 3, –1, –5,.are arithmetic because each step subtracts four. The number that is added (or subtracted) at each stage of an arithmetic sequence is referred to as the “common difference”d because if you subtract (that is, if you determine the difference of) subsequent terms, you will always receive this common value as a result of the process.

Below In a geometric sequence, the terms are connected to one another by always multiplying (or dividing) by the same value.

Each step of a geometric sequence is represented by a number that has been multiplied (or divided), which is referred to as the “common ratio.” If you divide (that is, if you determine the ratio of) subsequent terms, you’ll always receive this common value.

#### Find the common difference and the next term of the following sequence:

3, 11, 19, 27, and 35 are the numbers. In order to get the common difference, I must remove each succeeding pair of terms from the total. There’s no point in choosing which couple I want to sit with as long as they’re right next to one other. To be thorough, I’ll go over each and every subtraction: 819 – 11 = 827 – 19 = 835 – 27 = 819 – 11 = 827 – 19 = 835 – 27 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 = 819 – 11 Due to the fact that the difference is always 8, the common difference isd=8.

By adding the common difference to the fifth phrase, I can come up with the next word: 35 plus 8 equals 43 Then here’s my response: “common difference: six-hundred-and-fortieth-term

#### Find the common ratio and the seventh term of the following sequence:

To get the common ratio, I must divide each succeeding pair of terms by the number of terms in the series. There’s no point in choosing which couple I want to sit with as long as they’re right next to one other. I’ll go over all of the divisions to be thorough: The ratio is always three, hence sor= three. As a result, I have five terms remaining; the sixth term will be the next term, and the seventh will be the term after that. The value of the seventh term will be determined by multiplying the fifth term by the common ratio two times.

When it comes to arithmetic sequences, the common difference isd, and the first terma1is commonly referred to as “a “.

As a result of this pattern, the then-th terma n will take the form: n=a+ (n– 1)d When it comes to geometric sequences, the typical ratio isr, and the first terma1 is commonly referred to as “a “.

This pattern will be followed by a phrase with the following form: a n=ar(n– 1) is equal to a n.

#### Find the tenth term and then-th term of the following sequence:

, 1, 2, 4, 8, and so forth. Identifying whether sort of sequence this is (arithmetic or geometric) is the first step in solving the problem. As soon as I look at the differences, I see that they are not equal; for example, the difference between the second and first terms is 2 – 1 = 1, while the difference between the third and second terms is 4 – 2 = 2. As a result, this isn’t a logical sequence. As an alternative, the ratios of succeeding terms remain constant. For example, Two plus one equals twenty-four plus two equals twenty-eight plus four equals two.

The division, on the other hand, would have produced the exact same result.) The series has a common ratio of 2 and the first term is a.

I can simply insert the following into the formulaa n=ar(n– 1) to obtain the then-th term: So, for example, I may plugn= 10 into the then-th term formula and simplify it as follows_n= 10 Then here’s what I’d say: n-th term: tenth term: 256 n-th term

#### Find then-th term and the first three terms of the arithmetic sequence havinga6= 5andd=

The n-th term in an arithmetic series has the form n=a+ (n– 1) d, which stands for n=a+ (n– 1) d. In this particular instance, that formula results in me. When I solve this formula for the value of the first term in the sequence, I obtain the resulta= Then:I have the first three terms in the series as a result of this. Because I know the value of the first term and the common difference, I can also develop the expression for the then-th term, which will be easier to remember: In such case, my response is as follows:n-th word, first three terms:

#### Find then-th term and the first three terms of the arithmetic sequence havinga4= 93anda8= 65.

Due to the fact thata4 anda8 are four places apart, I can tell from the definition of an arithmetic sequence that I can get from the fourth term to the eighth term by multiplying the common difference by four times the fourth term; in other words, the definition tells me that a8=a4 + 4 d. I can then use this information to solve for the common differenced: 65 = 93 + 4 d –28 = 4 d –7 = 65 = 93 + 4 d Also, I know that the fourth term is related to the first term by the formulaa4=a+ (4 – 1) d, so I can find the value of the first terma by using the value I just found ford and the value I just found fora: 93 =a+ 3(–7) =a+ 3(–7) =a+ 3(–7) =a+ 3(–7) =a+ 3(–7) =a+ 3(–7) 93 plus 21 equals 114.

As soon as I know what the first term’s value is and what the value of the common difference is, I can use the plug-and-chug method to figure out what the first three terms’ values are, as well as the general form of the fourth term: The numbers are as follows: a1= 114, a2= 114– 7, a3= 107– 7, and an= 114 + (n – 1)(–7)= 114 – 7, n+ 7, and an= 121–7, respectively.

#### Find then-th and the26 th terms of the geometric sequence withanda12= 160.

Given that the two words for which they’ve provided numerical values are separated by 12 – 5 = 7 places, I know that I can go from the fifth term to the twelfth term by multiplying the fifth term by the common ratio seven times; that is, a12= (a5) (r7). I can use this to figure out what the value of the common ratior should be: I also know that the fifth component is related to the first by the formulaa5=ar4, so I can use that knowledge to solve for the value of the first term, which is as follows: Now that I know the value of the first term as well as the value of the common ratio, I can put both into the formula for the then-th term to obtain the following result: I can assess the twenty-sixth term using this formula, and it is as follows, simplified: Then here’s my response:n-th term: 2,621,440 for the 26th term Once we have mastered the art of working with sequences of arithmetic and geometric expressions, we may move on to the concerns of combining these sequences together.