What is an arithmetic sequence? An arithmetic sequence is an ordered set of numbers that have a common difference between each consecutive term. For example in the arithmetic sequence 3, 9, 15, 21, 27, the common difference is 6. An arithmetic sequence can be known as an arithmetic progression.
Contents
 1 What are the 5 examples of arithmetic sequence?
 2 What are 2 examples of arithmetic sequences in real life?
 3 What is arithmetic sequence?
 4 How do you find the arithmetic sequence?
 5 What type of sequence is 80 40 20?
 6 How is arithmetic sequence used in daily life?
 7 What are arithmetic sequences used for?
 8 How do you use arithmetic mean in real life?
 9 Is this an arithmetic sequence 4 16?
 10 Arithmetic Sequences and Sums
 11 Arithmetic Sequence
 12 Advanced Topic: Summing an Arithmetic Series
 13 Footnote: Why Does the Formula Work?
 14 Arithmetic Sequence – Formula, Meaning, Examples
 15 What is an Arithmetic Sequence?
 16 Nth Term of Arithmetic Sequence Formula
 17 Sum of Arithmetic sequence Formula
 18 Arithmetic Sequence Formulas
 19 Difference Between Arithmetic and Geometric Sequence
 20 Solved Examples on Arithmetic Sequence
 21 FAQs on Arithmetic sequence
 21.1 What are Arithmetic Sequence Formulas?
 21.2 How to Find An Arithmetic Sequence?
 21.3 What is the n thterm of an Arithmetic Sequence Formula?
 21.4 What is the Sum of an Arithmetic Sequence Formula?
 21.5 What is the Formula to Find the Common Difference of Arithmetic sequence?
 21.6 How to Find n in Arithmetic sequence?
 21.7 How To Find the First Term in Arithmetic sequence?
 21.8 What is the Difference Between Arithmetic Sequence and Arithmetic Series?
 21.9 What are the Types of Sequences?
 21.10 What are the Applications of Arithmetic Sequence?
 21.11 How to Find the n thTerm in Arithmetic Sequence?
 21.12 How to Find the Sum of n Terms of Arithmetic Sequence?
 22 Arithmetic Sequences
 23 What is an arithmetic sequence? + Example
 24 Arithmetic Sequence: Formula & Definition – Video & Lesson Transcript
 25 Finding the Terms
 26 Finding then th Term
 27 Arithmetic Sequences: Definition & Finding the Common Difference – Video & Lesson Transcript
 28 Finding the Common Difference
 29 The Formula
 30 Arithmetic progression – Wikipedia
 31 Sum
 32 Product
 33 Standard deviation
 34 Intersections
 35 History
 36 See also
 37 References
 38 External links
 39 Arithmetic Sequences and Series
 40 Arithmetic Series
 41 What is an Arithmetic Sequence?
 42 How an Arithmetic Sequence Works
 43 Arithmetic Mean
 44 Other Types of Sequences
 45 13.2: Arithmetic Sequences
 46 Finding the Number of Terms in a Finite Arithmetic Sequence
 47 Solving Application Problems with Arithmetic Sequences
What are the 5 examples of arithmetic sequence?
= 3, 6, 9, 12,15,. A few more examples of an arithmetic sequence are: 5, 8, 11, 14, 80, 75, 70, 65, 60,
What are 2 examples of arithmetic sequences in real life?
Examples of RealLife Arithmetic Sequences
 Stacking cups, chairs, bowls etc.
 Pyramidlike patterns, where objects are increasing or decreasing in a constant manner.
 Filling something is another good example.
 Seating around tables.
 Fencing and perimeter examples are always nice.
What is arithmetic sequence?
An arithmetic sequence is a sequence of numbers which increases or decreases by a constant amount each term. Once you know the common difference, you can find the value of c by plugging in 1 for n and the first term in the sequence for a1. Example 1: {1,5,9,13,17,21,25,}
How do you find the arithmetic sequence?
An arithmetic sequence is a list of numbers with a definite pattern. If you take any number in the sequence then subtract it by the previous one, and the result is always the same or constant then it is an arithmetic sequence.
What type of sequence is 80 40 20?
This is a geometric sequence since there is a common ratio between each term.
How is arithmetic sequence used in daily life?
Arithmetic sequences are used in daily life for different purposes, such as determining the number of audience members an auditorium can hold, calculating projected earnings from working for a company and building wood piles with stacks of logs.
What are arithmetic sequences used for?
An arithmetic sequence is a string of numbers where each number is the previous number plus a constant. This constant difference between each pair of successive numbers in our sequence is called the common difference. The general term is the formula that is used to calculate any number in an arithmetic sequence.
How do you use arithmetic mean in real life?
The arithmetic mean is used frequently not only in mathematics and statistics but also in fields such as economics, sociology, and history. For example, per capita income is the arithmetic mean income of a nation’s population.
Is this an arithmetic sequence 4 16?
This is an arithmetic sequence since there is a common difference between each term. In this case, adding 12 to the previous term in the sequence gives the next term.
Arithmetic Sequences and Sums
A sequence is a collection of items (typically numbers) that are arranged in a specific order. Each number in the sequence is referred to as aterm (or “element” or “member” in certain cases); for additional information, see Sequences and Series.
Arithmetic Sequence
An Arithmetic Sequence is characterized by the fact that the difference between one term and the next is a constant. In other words, we just increase the value by the same amount each time. endlessly.
Example:
1, 4, 7, 10, 13, 16, 19, 22, and 25 are the numbers 1 through 25. Each number in this series has a threedigit gap between them. Each time the pattern is repeated, the last number is increased by three, as seen below: As a general rule, we could write an arithmetic series along the lines of
 There are two words: Ais the first term, and dis is the difference between the two terms (sometimes known as the “common difference”).
Example: (continued)
1, 4, 7, 10, 13, 16, 19, 22, and 25 are the numbers 1 through 25. Has:
 In this equation, A = 1 represents the first term, while d = 3 represents the “common difference” between terms.
And this is what we get:
Rule
It is possible to define an Arithmetic Sequence as a rule:x n= a + d(n1) (We use “n1” since it is not used in the first term of the sequence).
Example: Write a rule, and calculate the 9th term, for this Arithmetic Sequence:
3, 8, 13, 18, 23, 28, 33, and 38 are the numbers three, eight, thirteen, and eighteen. Each number in this sequence has a fivepoint gap between them. The values ofaanddare as follows:
 A = 3 (the first term)
 D = 5 (the “common difference”)
 A = 3 (the first term).
Making use of the Arithmetic Sequencerule, we can see that_xn= a + d(n1)= 3 + 5(n1)= 3 + 3 + 5n 5 = 5n 2 xn= a + d(n1) = 3 + 3 + 3 + 5n n= 3 + 3 + 3 As a result, the ninth term is:x 9= 5 9 2= 43 Is that what you’re saying? Take a look for yourself! Arithmetic Sequences (also known as Arithmetic Progressions (A.P.’s)) are a type of arithmetic progression.
Advanced Topic: Summing an Arithmetic Series
To summarize the terms of this arithmetic sequence:a + (a+d) + (a+2d) + (a+3d) + (a+4d) + (a+5d) + (a+6d) + (a+7d) + (a+8d) + (a+9d) + (a+9d) + (a+9d) + (a+9d) + (a+9d) + (a+9d) + ( make use of the following formula: What exactly is that amusing symbol? It is referred to as The Sigma Notation is a type of notation that is used to represent a sigma function. Additionally, the starting and finishing values are displayed below and above it: “Sum upnwherengoes from 1 to 4,” the text states. 10 is the correct answer.
Example: Add up the first 10 terms of the arithmetic sequence:
The values ofa,dandnare as follows:
 In this equation, A = 1 represents the first term, d = 3 represents the “common difference” between terms, and n = 10 represents the number of terms to add up.
As a result, the equation becomes:= 5(2+93) = 5(29) = 145 Check it out yourself: why don’t you sum up all of the phrases and see whether it comes out to 145?
Footnote: Why Does the Formula Work?
Let’s take a look at why the formula works because we’ll be employing an unusual “technique” that’s worth understanding. First, we’ll refer to the entire total as “S”: S = a + (a + d) +. + (a + (n2)d) +(a + (n1)d) + (a + (n2)d) + (a + (n1)d) + (a + (n2)d) + (a + (n1)d) + (a + (n1)d) + (a + (n2)d) + (a + (n1)d) + (a + (n1)d) + (a + (n1)d) + After that, rewrite S in the opposite order: S = (a + (n1)d)+ (a + (n2)d)+. +(a + d)+a. +(a + d)+a. +(a + d)+a. Now, term by phrase, add these two together:
S  =  a  +  (a+d)  +  .  +  (a + (n2)d)  +  (a + (n1)d) 
S  =  (a + (n1)d)  +  (a + (n2)d)  +  .  +  (a + d)  +  a 
2S  =  (2a + (n1)d)  +  (2a + (n1)d)  +  .  +  (2a + (n1)d)  +  (2a + (n1)d) 
Each and every term is the same!
Furthermore, there are “n” of them. 2S = n (2a + (n1)d) = n (2a + (n1)d) Now, we can simply divide by two to obtain the following result: The function S = (n/2) (2a + (n1)d) is defined as This is the formula we’ve come up with:
Arithmetic Sequence – Formula, Meaning, Examples
When you have a succession of integers where the differences between every two subsequent numbers are the same, you have an arithmetic sequence. Let us take a moment to review what a sequence is. A sequence is a set of integers that are arranged in a certain manner. An arithmetic sequence is defined as follows: 1, 6, 11, 16,. is an arithmetic sequence because it follows a pattern in which each number is acquired by adding 5 to the phrase before it. There are two arithmetic sequence formulae available.
 The formula for determining the nth term of an arithmetic series. An arithmetic series has n terms, and the sum of the first n terms is determined by the following formula:
The formula for determining the n th term of an arithmetic sequence. An arithmetic series has n terms, and the sum of the first n terms is determined by the following formula;
1.  What is an Arithmetic Sequence? 
2.  Terms Related to Arithmetic Sequence 
3.  Nth Term of Arithmetic Sequence Formula 
4.  Sum of Arithmetic sequence Formula 
5.  Arithmetic Sequence Formulas 
6.  Difference Between Arithmetic and Geometric Sequence 
7.  FAQs on Arithmetic sequence 
What is an Arithmetic Sequence?
There are two ways in which anarithmetic sequence can be defined. When the differences between every two succeeding words are the same, it is said to be in sequence (or) Every term in an arithmetic series is generated by adding a specified integer (either positive or negative, or zero) to the term before it. Here is an example of an arithmetic sequence.
Arithmetic Sequences Example
For example, consider the series 3, 6, 9, 12, 15, which is an arithmetic sequence since every term is created by adding a constant number (3) to the term immediately before that one. Here,
 A = 3 for the first term
 D = 6 – 3 for the common difference
 12 – 9 for the second term
 15 – 12 for the third term
 A = 3 for the third term
As a result, arithmetic sequences can be expressed as a, a + d, a + 2d, a + 3d, and so forth. Let’s use the previous scenario as an example of how to test this pattern. a, a + d, a + 2d, a + 3d, a + 4d,. = 3, 3 + 3, 3 + 2(3), 3 + 3(3), 3 + 4(3),. = 3, 6, 9, 12, 15,. = 3, 6, 9, 12, 15,. = 3, 6, 9, 12, 15,. = 3, 6, 9, 12, 15,. Here are a few more instances of arithmetic sequences to consider:
 5, 8, 11, 14,
 80, 75, 70, 65, 60,
 2/2, 3/2, 2/2,
 2, 22, 32, 42,
 5/8, 11/14,
The terms of an arithmetic sequence are often symbolized by the letters a1, a2, a3, and so on. Arithmetic sequences are discussed in the following way, according to the vocabulary we employ.
First Term of Arithmetic Sequence
The first term of an arithmetic sequence is, as the name implies, the first integer in the sequence. It is often symbolized by the letters a1 (or) a. For example, the first word in the sequence 5, 8, 11, 14, is the number 5. Specifically, a1 = 6 (or) a = 6.
Common Difference of Arithmetic Sequence
The addition of a fixed number to each preceding term in an arithmetic series, with one exception (the first term), has previously been demonstrated in prior sections. The “fixed number” in this case is referred to as the “common difference,” and it is symbolized by the letter d. The formula for the common difference isd = a – an1.
Nth Term of Arithmetic Sequence Formula
In such case, the thterm of an arithmetic series of the form A1, A2, A3,. is given byan = a1 + (n1) d. This is also referred to as the broad word for the arithmetic sequence in some circles. This comes immediately from the notion that the arithmetic sequence a1, a2, a3,. = a1, a1 + d, a1 + 2d, a1 + 3d,. = a1, a1 + d, a1 + 3d,. = a1, a1 + 3d,. = a1, a1 + 3d,. Several arithmetic sequences are shown in the following table, along with the first term, the common difference, and the subsequent n thterms.
Arithmetic sequence  First Term(a)  Common Difference(d)  n thtermaₙ = a₁ + (n – 1) d 

80, 75, 70, 65, 60,.  80  5  80 + (n – 1) (5)= 5n + 85 
π/2, π, 3π/2, 2π,.  π/2  π/2  π/2 + (n – 1) (π/2)= nπ/2 
√2, 2√2, 3√2, 4√2,.  √2  √2  √2 + (n – 1) (√2)= √2 n 
Arithmetic Sequence Recursive Formula
In such case, the thterm of an arithmetic series of the forma1, a2, a3,. is given byan = a1 + (n – 1)d Additionally, this is referred to as the general name for the arithmetic series. As a direct result of the realization that the mathematical sequence a1, a2, a3,.
= a1, a1 + d, a1 + 2d, a1 + 3d,. = a1, a1 + 3d,. = a1, a1 + 3d,. = a1, a1 + 3d,. = a1, a1 + 3d,. Several arithmetic sequences are shown in the following table, along with the initial term, the common difference, and the next nth term in each.
Sum of Arithmetic sequence Formula
To obtain the sum of the first n terms of an arithmetic sequence, the sum of the arithmetic sequence formula is employed. Consider the following arithmetic sequence: a1 (or ‘a’) is the first term, and d is the common difference between the first and second terms. Sn is the symbol for the sum of the first n terms in the expression. Then
 The following is true: When the n thterm is unknown, Sn= n/2
 When the n thterm is known, Sn= n/2
Example Ms. Natalie makes $200,000 each year, with an annual pay rise of $25,000 in addition to that. So, how much money does she have at the conclusion of the first five years of her career? Solution In Ms. Natalie’s first year of employment, she earns a sum equal to a = 2,000,000. The annual increase is denoted by the symbol d = 25,000. We need to figure out how much money she will make in the first five years. As a result, n = 5. In the sum sum of arithmetic sequence formula, substituting these numbers results in Sn = n/2 Sn = 5/2(2(200000) + (5 – 1)(25000), which is 5/2 (400000 +100000), which is equal to 5/2 (500000), which is equal to 1250000.
We may modify this formula to be more useful for greater values of the constant ‘n.’
Sum of Arithmetic Sequence Proof
Consider the following arithmetic sequence: a1 is the first term, and d is the common difference between the two terms. The sum of the first ‘n’ terms of the series is given bySn = a1 + (a1 + d) + (a1 + 2d) +. + an, where Sn = a1 + (a1 + d) + (a1 + 2d) +. + an. (1) Let us write the same total from right to left in the same manner (i.e., from the n thterm to the first term). (an – d) + (an – 2d) +. + a1. Sn = a plus (an – d) plus (an – 2d) +. + a1. (2)By combining (1) and (2), all words beginning with the letter ‘d’ are eliminated.
+ (a1 + an) 2Sn = n (a1 + an) = n (a1 + an) Sn =/2 is a mathematical expression.
Arithmetic Sequence Formulas
The following are the formulae that are connected to the arithmetic sequence.
 There is a common distinction, the nth phrase, a = (a + 1)d
 The sum of n terms, Sn =/2 (or) n/2 (2a + 1)d
 The nth term, a = (a + 1)d
 The nth term, a = a + (n1)d
Difference Between Arithmetic and Geometric Sequence
The following are the distinctions between arithmetic sequence and geometric sequence:
Arithmetic sequences  Geometric sequences 
In this, the differences between every two consecutive numbers are the same.  In this, theratiosof every two consecutive numbers are the same. 
It is identified by the first term (a) and the common difference (d).  It is identified by the first term (a) and the common ratio (r). 
There is a linear relationship between the terms.  There is an exponential relationship between the terms. 
Notes on the Arithmetic Sequence that are very important
 Arithmetic sequences have the same difference between every two subsequent numbers
 This is known as the difference between two consecutive numbers. The common difference of an arithmetic sequence a1, a2, and a3 is d = a2 – a1 = a3 – a2 =
 The common difference of an arithmetic sequence a1, a2, and a3 is d = a2 – a1 = a3 – a2 =
 It is an= a1 + (n1)d for the nth term of an integer arithmetic sequence. It is equal to n/2 when the sum of the first n terms of an arithmetic sequence is calculated. Positive, negative, or zero can be used to represent the common difference of arithmetic sequences.
The difference between every two consecutive integers in an arithmetic series is the same; If we consider an arithmetic sequence of the numbers a1, a2, and a3, then the common difference is denoted by the symbol, d = a2 – A1 = a3 – A2 =, and the common difference of an arithmetic sequence of the numbers a1, a2, and a3 is denoted by the symbol, d = a1 = a3 – A2 = In an arithmetic series, the n th term is an= a1 + (n1)d.
In an arithmetic series, the sum of the first n terms is Sn = n/2. Positive, negative, or zero can be used to describe the common difference of arithmetic sequences.
 Sequence Calculator, Series Calculator, Arithmetic Sequence Calculator, Geometric Sequence Calculator are all terms used to refer to the same thing.
Solved Examples on Arithmetic Sequence
 Geometric Sequence Calculator, Arithmetic Sequence Calculator, Arithmetic Series Calculator, Sequence Calculator, Series Calculator
Continue to the next slide proceed to the next slide Simple graphics might help you break through difficult topics.
Math will no longer be a difficult topic for you, especially if you visualize the concepts and grasp them as a result. Schedule a NoObligation Trial Class.
FAQs on Arithmetic sequence
An arithmetic sequence is a sequence of integers in which every term (with the exception of the first term) is generated by adding a constant number to the preceding term. For example, the arithmetic sequence 1, 3, 5, 7, is an arithmetic sequence because each term is created by adding 2 (a constant integer) to the term before it.
What are Arithmetic Sequence Formulas?
Here are the formulae connected to an arithmetic series where a1 (or a) is the first term and d is the common difference: a1 (or a) is the first term, and d is the common difference:
 When we look at the common difference, it is second term minus first term. The n thterm of the series is defined as a = a + (n – 1)d
 Sn =/2 (or) n/2 (2a + (n – 1)d) is the sum of the n terms in the sequence.
How to Find An Arithmetic Sequence?
Whenever the difference between every two successive terms of a series is the same, then the sequence is said to be an arithmetic sequence. For example, the numbers 3, 8, 13, and 18 are arithmetic because
What is the n thterm of an Arithmetic Sequence Formula?
The n thterm of arithmetic sequences is represented by the expression a = a + (n – 1) d. The letter ‘a’ stands for the first term, while the letter ‘d’ stands for the common difference.
What is the Sum of an Arithmetic Sequence Formula?
Arithmetic sequences with a common difference ‘d’ and the first term ‘a’ are denoted by Sn, and we have two formulae to compute the sum of the first n terms with the common difference ‘d’.
What is the Formula to Find the Common Difference of Arithmetic sequence?
As the name implies, the common difference of an arithmetic sequence is the difference between every two of its consecutive (or consecutively occurring) terms. Finding the common difference of an arithmetic series may be calculated using the formula: d = a – an1.
How to Find n in Arithmetic sequence?
When we are asked to find the number of terms (n) in arithmetic sequences, it is possible that part of the information about a, d, an, or Sn has already been provided in the problem. We will simply substitute the supplied values in the formulae of an or Sn and solve for n as a result of this.
How To Find the First Term in Arithmetic sequence?
The number that appears in the first position from the left of an arithmetic sequence is referred to as the first term of the sequence. It is symbolized by the letter ‘a’. If the letter ‘a’ is not provided in the problem, then the problem may contain some information concerning the letter d (or) the letter a (or) the letter Sn. We shall simply insert the specified values in the formulae of an or Sn and solve for a by dividing by two.
What is the Difference Between Arithmetic Sequence and Arithmetic Series?
When it comes to numbers, an arithmetic sequence is a collection in which all of the differences between every two successive integers are equal to one, and an arithmetic series is the sum of a few or more terms of an arithmetic sequence.
What are the Types of Sequences?
In mathematics, there are three basic types of sequences. They are as follows:
 The arithmetic series, the geometric sequence, and the harmonic sequence are all examples of sequences.
What are the Applications of Arithmetic Sequence?
Here are some examples of applications: The pay of a person who receives an annual raise of a fixed amount, the rent of a taxi that charges by the mile traveled, the number of fish in a pond that increases by a certain number each month, and so on are examples of steady increases.
How to Find the n thTerm in Arithmetic Sequence?
The following are the actions to take in order to get the n thterm of arithmetic sequences:
 Identify the first term, a
 The common difference, d
 And the last term, e. Choose the word that you wish to use. n, to be precise. All of them should be substituted into the formula a = a + (n – 1) d
How to Find the Sum of n Terms of Arithmetic Sequence?
To get the sum of the first n terms of arithmetic sequences, use the following formula:
 Identify the initial term (a)
 The common difference (d)
 And the last term (e). Determine which phrase you wish to use (n)
 All of them should be substituted into the formula Sn= n/2(2a + (n – 1)d)
Arithmetic Sequences
In mathematics, an arithmetic sequence is a succession of integers in which the value of each number grows or decreases by a fixed amount each term. When an arithmetic sequence has n terms, we may construct a formula for each term in the form fn+c, where d is the common difference. Once you’ve determined the common difference, you can calculate the value ofcby substituting 1fornand the first term in the series fora1 into the equation. Example 1: The arithmetic sequence 1,5,9,13,17,21,25 is an arithmetic series with a common difference of four.
 For the thenthterm, we substituten=1,a1=1andd=4inan=dn+cto findc, which is the formula for thenthterm.
 As an example, the arithmetic sequence 129630360 is an arithmetic series with a common difference of three.
 It is important to note that, because the series is decreasing, the common difference is a negative number.) To determine the next3 terms, we just keep subtracting3: 6 3=9 9 3=12 12 3=15 6 3=9 9 3=12 12 3=15 As a result, the next three terms are 9, 12, and 15.
 As a result, the formula for the fifteenth term in this series isan=3n+15.
Exemple No. 3: The number series 2,3,5,8,12,17,23,. is not an arithmetic sequence. Differencea2 is 1, but the following differencea3 is 2, and the differencea4 is 3. There is no way to write a formula in the form of forman=dn+c for this sequence. Geometric sequences are another type of sequence.
What is an arithmetic sequence? + Example
An arithmetic sequence is a series (list of numbers) in which there is a common difference (a positive or negative constant) between the items that are consecutively listed. For example, consider the following instances of arithmetic sequences: 1.) The numbers 7, 14, 21, and 28 are used because the common difference is 7. 2.) The numbers 48, 45, 42, and 39 are chosen because they have a common difference of – 3. The following are instances of arithmetic sequences that are not to be confused with them: It is not 2,4,8,16 since the difference between the first and second terms is 2, but the difference between the second and third terms is 4, and the difference between the third and fourth terms is 8 because the difference between the first and second terms is 2.
2.) The numbers 1, 4, 9, and 16 are incorrect because the difference between the first and second is 3, the difference between the second and third is 5, and the difference between the third and fourth is 7.
The reasons for this are that the difference between the first and second is three points, the difference between the second and third is two points, and the difference between third and fourth is five points.
Arithmetic Sequence: Formula & Definition – Video & Lesson Transcript
An arithmetic sequence is a series (list of numbers) in which there is a common difference (either a positive or negative constant) between the words that are successive. Some instances of arithmetic sequences include the following: 1.) The numbers 7, 14, 21, and 28 are chosen because the common difference is seven. 2.) Secondly, the numbers 48, 45, 42, and 39 are chosen because they all have a – 3. Arithmetic sequences do not include the following examples: It is not 2,4,8,16 since the difference between the first and second terms is 2, but the difference between the second and third terms is 4, and the difference between the third and fourth terms is 8 because the difference between the first and second terms is 2.
2.) The numbers 1, 4, 9, and 16 are incorrect since the difference between the first and second is 3, the difference between the second and third is 5, and the difference between the third and fourth is seven.
Because the difference between the first and second is 3, the difference between third and fourth is 2, and the difference between fifth and tenth is twelve, the numbers 2, 5, 7, and 12 are not valid.
Finding the Terms
Let’s start with a straightforward problem. We have the following numbers in our sequence: 3, 2, 7, 12,. What is the seventh and last phrase in this sequence? As we can see, the most typical difference between successive periods is five points.
The fourth term equals twelve, therefore a (4) = twelve. We can continue to add terms to the list in the following order until we reach the seventh term: 3, 2, 7, 12, 17, 22, 27,. and so on. This tells us that a (7) = 27 is the answer.
Finding then th Term
Consider the identical sequence as in the preceding example, with the exception that we must now discover the 33rd word oracle (33). We may utilize the same strategy as previously, but it would take a long time to complete the project. We need to come up with a way that is both faster and more efficient. We are aware that we are starting with ata (1), which is a negative number. We multiply each phrase by 5 to get the next term. To go from a (1) to a (33), we’d have to add 32 consecutive terms (33 – 1 = 32) to the beginning of the sequence.
To put it another way, a (33) = 3 + (33 – 1)5.
a (33) = 3 + (33 – 1)5 = 3 + 160 = 157.
Then the relationship between the th term and the initial terma (1) and the common differencedis provided by:
Arithmetic Sequences: Definition & Finding the Common Difference – Video & Lesson Transcript
Consider the identical sequence as in the previous example, with the exception that we must now discover the 33rd word, ora (33). Even if we go with the same approach as previously, the process will take a long time. The solution must be more expeditious and effective than what we now use. Our starting point is ata (1), which is a negative number. Each term is multiplied by 5 to arrive at the final value. To get from a (1) to a (33), we’d have to add 32 consecutive terms (33 – 1 = 32) to the beginning of the series.
This is equivalent to (33) + (331)5 = (33) + (33 – 1)5 = (33) The following is a solution to the problem posed above: (33) = 3 + (33 – 1)5 = 3 + (32*(5) = 3 + 160 = 157 = a (33) = 3 + (33 – 1)5 = 3 + 32*(5) = 3 + 160 = 157 An arithmetic sequence is represented in Figure 2 by a generic formula or rule.
Finding the Common Difference
We can compute the common difference for each of our sequences by choosing any two integers that are adjacent to each other and subtracting the first from the second. This method works for all of our sequences. We may repeat the process with another set of numbers to ensure that the difference remains the same. For our first series of 1, 2, 3, 4,., we can subtract the 1 from the 2 to get 2 – 1 = 1. For our second sequence of 1, 2, 3, 4,., we can subtract the 1 from the 2 to get 2 – 1 = 1.
Take a look at it!
Repeating this process with the 3 and the 4 will reveal that it too has a difference of 1, indicating that this arithmetic sequence has one common difference of one.
When we deduct the 5 from the 8 and the 8 from the 11, we get a total of 3 as well.
In this case, we obtain 2 if we remove 3 from 5 and 5 from 7 respectively. The result of subtracting 7 from 9 is similarly 2. As a result, the most common difference for this sequence is number 2.
The Formula
Given that we have a common difference between all of the numbers in our arithmetic series, we can utilize this knowledge to develop a formula that will allow us to locate any number in our sequence, whether it is the tenth number or the fiftyfirst number in our sequence. It’s important to remember that each number in an arithmetic sequence is actually the first number plus the common difference multiplied by the number of times we have to add it up to get there. Consider how we arrived at the second term by first adding the common difference to the first term once:
The common difference must be added once to the first term to get to the second term.Arithmetic progression – Wikipedia
The evolution of mathematical operations The phrase “orarithmetic sequence” refers to a sequence of integers in which the difference between successive words remains constant. Consider the following example: the sequence 5, 7, 9, 11, 13, 15,. is an arithmetic progression with a common difference of two. As an example, if the first term of an arithmetic progression is and the common difference between succeeding members is, then in general the th term of the series () is given by:, and in particular, A finite component of an arithmetic progression is referred to as a finite arithmetic progression, and it is also referred to as an arithmetic progression in some cases.
Sum
2  +  5  +  8  +  11  +  14  =  40 
14  +  11  +  8  +  5  +  2  =  40 


16  +  16  +  16  +  16  +  16  =  80 
Calculation of the total amount 2 + 5 + 8 + 11 + 14 = 2 + 5 + 8 + 11 + 14 When the sequence is reversed and added to itself term by term, the resultant sequence has a single repeating value equal to the sum of the first and last numbers (2 + 14 = 16), which is the sum of the first and final numbers in the series. As a result, 16 + 5 = 80 is double the total. When all the elements of a finite arithmetic progression are added together, the result is known as anarithmetic series. Consider the following sum, for example: To rapidly calculate this total, begin by multiplying the number of words being added (in this case 5), multiplying by the sum of the first and last numbers in the progression (in this case 2 + 14 = 16), then dividing the result by two: In the example above, this results in the following equation: This formula is applicable to any real numbers and.
Derivation
An animated demonstration of the formula that yields the sum of the first two numbers, 1+2+.+n. Start by stating the arithmetic series in two alternative ways, as shown above, in order to obtain the formula. When both sides of the two equations are added together, all expressions involvingdcancel are eliminated: The following is a frequent version of the equation where both sides are divided by two: After reinserting the replacement, the following variant form is produced: Additionally, the mean value of the series may be computed using the following formula: The formula is extremely close to the mean of an adiscrete uniform distribution in terms of its mathematical structure.
Product
When the members of a finite arithmetic progression with a beginning elementa1, common differencesd, andnelements in total are multiplied together, the product is specified by a closed equation where indicates the Gamma function.
When the value is negative or 0, the formula is invalid. This is a generalization of the fact that the product of the progressionis provided by the factorialand that the productforpositive integersandis supplied by the factorial.
Derivation
Where represents the factorial ascension. According to the recurrence formula, which is applicable for complex numbers0 “In order to have a positive complex number and an integer that is greater than or equal to 1, we need to divide by two. As a result, if0 “as well as a concluding note
Examples
Exemple No. 1 If we look at an example, up to the 50th term of the arithmetic progression is equal to the product of all the terms. The product of the first ten odd numbers is provided by the number = 654,729,075 in Example 2.
Standard deviation
In any mathematical progression, the standard deviation may be determined aswhere is the number of terms in the progression and is the common difference between terms. The standard deviation of an adiscrete uniform distribution is quite close to the standard deviation of this formula.
Intersections
The intersection of any two doubly infinite arithmetic progressions is either empty or another arithmetic progression, which may be obtained using the Chinese remainder theorem. The intersection of any two doubly infinite arithmetic progressions is either empty or another arithmetic progression. Whenever a pair of progressions in a family of doubly infinite arithmetic progressions has a nonempty intersection, there exists a number that is common to all of them; in other words, infinite arithmetic progressions form a Helly family.
History
This method was invented by a young Carl Friedrich Gaussin primary school student who, according to a story of uncertain reliability, multiplied n/2 pairs of numbers in the sum of the integers from 1 through 100 by the values of each pairn+ 1. This method is used to compute the sum of the integers from 1 through 100. However, regardless of whether or not this narrative is true, Gauss was not the first to discover this formula, and some believe that its origins may be traced back to the Pythagoreans in the 5th century BC.
See also
 Geometric progression
 Harmonic progression
 Arithmetic progression
 Number with three sides
 Triangular number
 Sequence of arithmetic and geometry operations
 Inequality between the arithmetic and geometric means
 In mathematical progression, primes are used. Equation of difference in a linear form
 A generalized arithmetic progression is a set of integers that is formed in the same way that an arithmetic progression is, but with the addition of the ability to have numerous different differences
 Heronian triangles having sides that increase in size as the number of sides increases
 Mathematical problems that include arithmetic progressions
 Utonality
References
 Duchet, Pierre (1995), “Hypergraphs,” in Graham, R. L., Grötschel, M., and Lovász, L. (eds. ), Handbook of combinatorics, Vol. 1, 2, Amsterdam: Elsevier, pp. 381–432, MR1373663. Duchet, Pierre (1995), “Hypergraphs,” in Graham, R. L., Grötschel, M., and Particularly noteworthy are Section 2.5, “Helly Property,” pages 393–394
 And Hayes, Brian (2006). “Gauss’s Day of Reckoning,” as the saying goes. Journal of the American Scientist, 94(3), 200, doi:10.1511/2006.59.200 The original version of this article was published on January 12, 2012. retrieved on October 16, 2020
 Retrieved on October 16, 2020
 “The Unknown Heritage”: a trace of a longforgotten center of mathematical expertise,” J. Hyrup, et al. The American Journal of Physics 62, 613–654 (2008)
 Tropfke, Johannes, et al (1924). Geometrie analytisch (analytical geometry) pp. 3–15. ISBN 9783111080628
 Tropfke, Johannes. Walter de Gruyter. pp. 3–15. ISBN 9783111080628
 (1979). Arithmetik and Algebra are two of the most important subjects in mathematics. pp. 344–354, ISBN 9783110048933
 Problems to Sharpen the Young,’ Walter de Gruyter, pp. 344–354, ISBN 9783110048933
 The Mathematical Gazette, volume 76, number 475 (March 1992), pages 102–126
 Ross, H.E.Knott, B.I. (2019) Dicuil (9th century) on triangle and square numbers, British Journal for the History of Mathematics, volume 34, number 2, pages 79–94
 Laurence E. Sigler is the translator for this work (2002). The Liber Abaci of Fibonacci. SpringerVerlag, Berlin, Germany, pp.259–260, ISBN 0387954198
 Victor J. Katz is the editor of this work (2016). The Mathematics of Medieval Europe and North Africa: A Sourcebook is a reference work on medieval mathematics. 74.23 A Mediaeval Derivation of the Sum of an Arithmetic Progression. Princeton, NJ: Princeton University Press, 1990, pp. 91, 257. ISBN 9780691156859
 Stern, M. (1990). 74.23 A Mediaeval Derivation of the Sum of an Arithmetic Progression. Princeton, NJ: Princeton University Press, 1990, pp. 91, 257. ISBN 9780691156859
 Stern, M. Journal of the American Mathematical Society, vol. 74, no. 468, pp. 157159. doi:10.2307/3619368.
External links
 Weisstein, Eric W., “Arithmetic series,” in Encyclopedia of Mathematics, EMS Press, 2001
 “Arithmetic progression,” in Encyclopedia of Mathematics, EMS Press, 2001. MathWorld
 Weisstein, Eric W. “Arithmetic series.” MathWorld
 Weisstein, Eric W. “Arithmetic series.”
Arithmetic Sequences and Series
The succession of arithmetic operations There is a series of integers in which each subsequent number is equal to the sum of the preceding number and specified constants. orarithmetic progression is a type of progression in which numbers are added together. This term is used to describe a series of integers in which each subsequent number is the sum of the preceding number and a certain number of constants (e.g., 1). an=an−1+d Sequence of Arithmetic Operations Furthermore, becauseanan1=d, the constant is referred to as the common difference.
For example, the series of positive odd integers is an arithmetic sequence, consisting of the numbers 1, 3, 5, 7, 9, and so on.
This word may be constructed using the generic terman=an1+2where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, where, To formulate the following equation in general terms, given the initial terma1of an arithmetic series and its common differenced, we may write: a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3da5=a4+d=(a1+3d)+d=a1+4d⋮ As a result, we can see that each arithmetic sequence may be expressed as follows in terms of its initial element, common difference, and index: an=a1+(n−1)d Sequence of Arithmetic Operations In fact, every generic word that is linear defines an arithmetic sequence in its simplest definition.
Example 1
Identify the general term of the above arithmetic sequence and use that equation to determine the series’s 100th term. For example: 7,10,13,16,19,… Solution: The first step is to determine the common difference, which is d=10 7=3. It is important to note that the difference between any two consecutive phrases is three. The series is, in fact, an arithmetic progression, with a1=7 and d=3. an=a1+(n1)d=7+(n1)3=7+3n3=3n+4 and an=a1+(n1)d=7+(n1)3=7+3n3=3n+4 and an=a1+(n1)d=3 As a result, we may express the general terman=3n+4 as an equation.
To determine the 100th term, use the following equation: a100=3(100)+4=304 Answer_an=3n+4;a100=304 It is possible that the common difference of an arithmetic series be negative.
Example 2
Identify the general term of the given arithmetic sequence and use it to determine the 75th term of the series: 6,4,2,0,−2,… Solution: Make a start by determining the common difference, d = 4 6=2. Next, determine the formula for the general term, wherea1=6andd=2 are the variables. an=a1+(n−1)d=6+(n−1)⋅(−2)=6−2n+2=8−2n As a result, an=8nand the 75thterm may be determined as follows: an=8nand the 75thterm a75=8−2(75)=8−150=−142 Answer_an=8−2n;a100=−142 The terms in an arithmetic sequence that occur between two provided terms are referred to as arithmetic means.
Example 3
Find all of the words that fall between a1=8 and a7=10. in the context of an arithmetic series Or, to put it another way, locate all of the arithmetic means between the 1st and 7th terms. Solution: Begin by identifying the points of commonality. In this situation, we are provided with the first and seventh terms, respectively: an=a1+(n−1) d Make use of n=7.a7=a1+(71)da7=a1+6da7=a1+6d Substitutea1=−8anda7=10 into the preceding equation, and then solve for the common differenced result. 10=−8+6d18=6d3=d Following that, utilize the first terma1=8.
a1=3(1)−11=3−11=−8a2=3 (2)−11=6−11=−5a3=3 (3)−11=9−11=−2a4=3 (4)−11=12−11=1a5=3 (5)−11=15−11=4a6=3 (6)−11=18−11=7} In arithmetic, a7=3(7)11=21=10 means a7=3(7)11=10 Answer: 5, 2, 1, 4, 7, and 8.
Example 4
Find the general term of an arithmetic series with a3=1 and a10=48 as the first and last terms. Solution: We’ll need a1 and d in order to come up with a formula for the general term. Using the information provided, it is possible to construct a linear system using these variables as variables. andan=a1+(n−1) d:{a3=a1+(3−1)da10=a1+(10−1)d⇒ {−1=a1+2d48=a1+9d Make use of a3=1. Make use of a10=48. Multiplying the first equation by one and adding the result to the second equation will eliminate a1.
an=a1+(n−1)d=−15+(n−1)⋅7=−15+7n−7=−22+7n Answer_an=7n−22 Take a look at this! Identify the general term of the above arithmetic sequence and use that equation to determine the series’s 100th term. For example: 32,2,52,3,72,… Answer_an=12n+1;a100=51
Arithmetic Series
Series of mathematical operations When an arithmetic sequence is added together, the result is called the sum of its terms (or the sum of its terms and numbers). Consider the following sequence: S5=n=15(2n1)=++++= 1+3+5+7+9+25=25, where S5=n=15(2n1)=++++ = 1+3+5+7+9=25, where S5=n=15(2n1)=++++= 1+3+5+7+9 = 25. Adding 5 positive odd numbers together, like we have done previously, is manageable and straightforward. Consider, on the other hand, adding the first 100 positive odd numbers. This would be quite timeconsuming.
When we write this series in reverse, we get Sn=an+(and)+(an2d)+.+a1 as a result.
2.:Sn=n(a1+an) 2 Calculate the sum of the first 100 terms of the sequence defined byan=2n1 by using this formula.
The sum of the two variables, S100, is 100 (1 + 100)2 = 100(1 + 199)2.
Example 5
The sum of the first 50 terms of the following sequence: 4, 9, 14, 19, 24,. is to be found. The solution is to determine whether or not there is a common difference between the concepts that have been provided. d=9−4=5 It is important to note that the difference between any two consecutive phrases is 5. The series is, in fact, an arithmetic progression, and we may writean=a1+(n1)d=4+(n1)5=4+5n5=5n1 as an anagram of the sequence. As a result, the broad phrase isan=5n1 is used. For this sequence, we need the 1st and 50th terms to compute the 50thpartial sum of the series: a1=4a50=5(50)−1=249 Then, using the formula, find the partial sum of the given arithmetic sequence that is 50th in length.
Example 6
Evaluate:Σn=135(10−4n). This problem asks us to find the sum of the first 35 terms of an arithmetic series with a general terman=104n. The solution is as follows: This may be used to determine the 1 stand for the 35th period. a1=10−4(1)=6a35=10−4(35)=−130 Then, using the formula, find out what the 35th partial sum will be. Sn=n(a1+an)2S35=35⋅(a1+a35)2=352=35(−124)2=−2,170 2,170 is the answer.
Example 7
In an outdoor amphitheater, the first row of seating comprises 26 seats, the second row contains 28 seats, the third row contains 30 seats, and so on and so forth. Is there a maximum capacity for seating in the theater if there are 18 rows of seats? The Roman Theater (Fig. 9.2) (Wikipedia) Solution: To begin, discover a formula that may be used to calculate the number of seats in each given row. In this case, the number of seats in each row is organized into a sequence: 26,28,30,… It is important to note that the difference between any two consecutive words is 2.
where a1=26 and d=2.
As a result, the number of seats in each row may be calculated using the formulaan=2n+24.
In order to do this, we require the following 18 thterms: a1=26a18=2(18)+24=60 This may be used to calculate the 18th partial sum, which is calculated as follows: Sn=n(a1+an)2S18=18⋅(a1+a18)2=18(26+60) 2=9(86)=774 There are a total of 774 seats available.
Take a look at this! Calculate the sum of the first 60 terms of the following sequence of numbers: 5, 0, 5, 10, 15,. are all possible combinations. Answer_S60=−8,550
Key Takeaways
 When the difference between successive terms is constant, a series is called an arithmetic sequence. According to the following formula, the general term of an arithmetic series may be represented as the sum of its initial term, common differenced term, and indexnumber, as follows: an=a1+(n−1)d
 An arithmetic series is the sum of the terms of an arithmetic sequence
 An arithmetic sequence is the sum of the terms of an arithmetic series
 As a result, the partial sum of an arithmetic series may be computed using the first and final terms in the following manner: Sn=n(a1+an)2
Topic Exercises
 Given the first term and common difference of an arithmetic series, write the first five terms of the sequence. Calculate the general term for the following numbers: a1=5
 D=3
 A1=12
 D=2
 A1=15
 D=5
 A1=7
 D=4
 D=1
 A1=23
 D=13
 A 1=1
 D=12
 A1=54
 D=14
 A1=1.8
 D=0.6
 A1=4.3
 D=2.1
 Find a formula for the general term based on the arithmetic sequence and apply it to get the 100 th term based on the series. 0.8, 2, 3.2, 4.4, 5.6,.
 4.4, 7.5, 13.7, 16.8,.
 3, 8, 13, 18, 23,.
 3, 7, 11, 15, 19,.
 6, 14, 22, 30, 38,.
 5, 10, 15, 20, 25,.
 2, 4, 6, 8, 10,.
 12,52,92,132,.
 13, 23, 53,83,.
 14,12,54,2,114,. Find the positive odd integer that is 50th
 Find the positive even integer that is 50th
 Find the 40 th term in the sequence that consists of every other positive odd integer in the following format: 1, 5, 9, 13,.
 Find the 40th term in the sequence that consists of every other positive even integer: 1, 5, 9, 13,.
 Find the 40th term in the sequence that consists of every other positive even integer: 2, 6, 10, 14,.
 2, 6, 10, 14,. What number is the term 355 in the arithmetic sequence 15, 5, 5, 15, 25,.
 What number is the phrase 172 in the arithmetic sequence 4, 4, 12, 20, 28,.
 What number is the term 355 in the arithmetic sequence 15, 5, 5, 15, 25,.
 Find an equation that yields the general term in terms of a1 and the common differenced given the arithmetic sequence described by the recurrence relationan=an1+5wherea1=2 andn1 and the common differenced
 Find an equation that yields the general term in terms ofa1and the common differenced, given the arithmetic sequence described by the recurrence relationan=an19wherea1=4 andn1
 This is the problem.
 Calculate a formula for the general term based on the terms of an arithmetic sequence: a1=6anda7=42
 A1=12anda12=6
 A1=19anda26=56
 A1=9anda31=141
 A1=16anda10=376
 A1=54anda11=654
 A3=6anda26=40
 A3=16andananda15=
 Find all possible arithmetic means between the given terms: a1=3anda6=17
 A1=5anda5=7
 A2=4anda8=7
 A5=12anda9=72
 A5=15anda7=21
 A6=4anda11=1
 A7=4anda11=1
Part B: Arithmetic Series
 Make a calculation for the provided total based on the formula for the general term an=3n+5
 S100
 An=5n11
 An=12n
 S70
 An=132n
 S120
 An=12n34
 S20
 An=n35
 S150
 An=455n
 S65
 An=2n48
 S95
 An=4.41.6n
 S75
 An=6.5n3.3
 S67
 An=3n+5
 Consider the following values: n=1160(3n)
 N=1121(2n)
 N=1250(4n3)
 N=1120(2n+12)
 N=170(198n)
 N=1220(5n)
 N=160(5212n)
 N=151(38n+14)
 N=1120(1.5n2.6)
 N=1175(0.2n1.6)
 The total of all 200 positive integers is found by counting them up. To solve this problem, find the sum of the first 400 positive integers.
 The generic term for a sequence of positive odd integers is denoted byan=2n1 and is defined as follows: Furthermore, the generic phrase for a sequence of positive even integers is denoted by the number an=2n. Look for the following: The sum of the first 50 positive odd integers
 The sum of the first 200 positive odd integers
 The sum of the first 50 positive even integers
 The sum of the first 200 positive even integers
 The sum of the first 100 positive even integers
 The sum of the firstk positive odd integers
 The sum of the firstk positive odd integers the sum of the firstk positive even integers
 The sum of the firstk positive odd integers
 There are eight seats in the front row of a tiny theater, which is the standard configuration. Following that, each row contains three additional seats than the one before it. How many total seats are there in the theater if there are 12 rows of seats? In an outdoor amphitheater, the first row of seating comprises 42 seats, the second row contains 44 seats, the third row contains 46 seats, and so on and so forth. When there are 22 rows, how many people can fit in the theater’s entire seating capacity? The number of bricks in a triangle stack are as follows: 37 bricks on the bottom row, 34 bricks on the second row and so on, ending with one brick on the top row. What is the total number of bricks in the stack
 Each succeeding row of a triangle stack of bricks contains one fewer brick, until there is just one brick remaining on the top of the stack. Given a total of 210 bricks in the stack, how many rows does the stack have? A wage contract with a 10year term pays $65,000 in the first year, with a $3,200 raise for each consecutive year after. Calculate the entire salary obligation over a tenyear period (see Figure 1). In accordance with the hour, a clock tower knocks its bell a specified number of times. The clock strikes once at one o’clock, twice at two o’clock, and so on until twelve o’clock. A day’s worth of time is represented by the number of times the clock tower’s bell rings.
Part C: Discussion Board
 Is the Fibonacci sequence an arithmetic series or a geometric sequence? How to explain: Using the formula for the then th partial sum of an arithmetic sequenceSn=n(a1+an)2and the formula for the general terman=a1+(n1)dto derive a new formula for the then th partial sum of an arithmetic sequenceSn=n2, we can derive the formula for the then th partial sum of an arithmetic sequenceSn=n2. How would this formula be beneficial in the given situation? Explain with the use of an example of your own creation
 Discuss strategies for computing sums in situations when the index does not begin with one. For example, n=1535(3n+4)=1,659
 N=1535(3n+4)=1,659
 Carl Friedrich Gauss is the subject of a wellknown tale about his misbehaving in school. As a punishment, his instructor assigned him the chore of adding the first 100 integers to his list of disciplinary actions. According to folklore, young Gauss replied accurately within seconds of being asked. The question is, what is the solution, and how do you believe he was able to come up with the figure so quickly?
Answers
 Is the Fibonacci sequence an arithmetic series, or is it a mathematical sequence? How to explain: Using the formula for the then th partial sum of an arithmetic sequenceSn=n(a1+an)2and the formula for the general terman=a1+(n1)dto derive a new formula for the then th partial sum of an arithmetic sequenceSn=n2, we can derive the formula for the then th partial sum of an arithmetic sequenceSn=n2 How would this formula be beneficial in certain situations? Make a personal example to illustrate your point
 Discuss strategies for computing sums in situations when the index does not begin at one (1). n=1535(3n+4)=1,659 is an example of the number n=1535(3n+4)=1,659 Carl Friedrich Gauss was once accused of misbehaving at school, according to a wellknown legend. As a punishment, his instructor assigned him the chore of adding the first 100 integers to his list of disciplinary measures. Apparently, Gauss responded accurately within seconds, according to mythology. In what way do you believe he was able to come up with the solution so rapidly, and how do you think he did it?
 Is the Fibonacci sequence an arithmetic series or a number sequence? How to explain: Using the formula for the then th partial sum of an arithmetic sequenceSn=n(a1+an)2and the formula for the general terman=a1+(n1)dto derive a new formula for the then th partial sum of an arithmetic sequenceSn=n2, we can deduce the formula for the then th partial sum of an arithmetic sequenceSn=n2. In what situations might this formula be beneficial? Explain with the help of an example of your own design
 Explain how to calculate sums when the index does not begin at one. For instance, n=1535(3n+4)=1,659
 N=1535(3n+4)=1,659
 Carl Friedrich Gauss was once accused of misbehaving at school, according to a wellknown tale. His teacher punished him by assigning him the duty of adding the first 100 integers. According to folklore, young Gauss responded accurately in under a second. The question is: what is the solution, and how do you believe he was able to come up with the amount so quickly?
What is an Arithmetic Sequence?
Sequences of numbers are useful in algebra because they allow you to see what occurs when something keeps becoming larger or smaller over time. The common difference, which is the difference between one number and the next number in the sequence, is the defining characteristic of an arithmetic sequence. This difference is a constant value in arithmetic sequences, and it can be either positive or negative in nature. Consequently, an arithmetic sequence continues to grow or shrink by a defined amount each time a new number is added to the list of numbers that make up the sequence is added to it.
TL;DR (Too Long; Didn’t Read)
As defined by the Common Difference formula, an arithmetic sequence is a list of integers in which consecutive entries differ by the same amount, called the common difference. Whenever the common difference is positive, the sequence continues to grow by a predetermined amount, and when it is negative, the series begins to shrink. The geometric series, in which terms differ by a common factor, and the Fibonacci sequence, in which each number is the sum of the two numbers before it, are two more typical sequences that might be encountered.
How an Arithmetic Sequence Works
There are three elements that form an arithmetic series: a starting number, a common difference, and the number of words in the sequence. For example, the first twelve terms of an arithmetic series with a common difference of three and five terms are 12, 15, 18, 21, and 24. A declining series starting with the number 3 has a common difference of 2 and six phrases, and it is an example of a decreasing sequence. This series is composed of the numbers 3, 1, 1, 3, 5, and 7. There is also the possibility of an unlimited number of terms in arithmetic sequences.
Arithmetic Mean
A matching series to an arithmetic sequence is a series that sums all of the terms in the sequence. When the terms are put together and the total is divided by the total number of terms, the result is the arithmetic mean or the mean of the sum of the terms. The arithmetic mean may be calculated using the formula text = frac n text. The observation that when the first and last terms of an arithmetic sequence are added, the total is the same as when the second and next to last terms are added, or when the third and third to last terms are added, provides a simple method of computing the mean of an arithmetic series.
The mean of an arithmetic sequence is calculated by dividing the total by the number of terms in the sequence; hence, the mean of an arithmetic sequence is half the sum of the first and final terms.
Instead, by restricting the total to a specific number of items, it is possible to find the mean of a partial sum. It is possible to compute the partial sum and its mean in the same manner as for a noninfinite sequence in this situation.
Other Types of Sequences
Observations from experiments or measurements of natural occurrences are frequently used to create numerical sequences. Such sequences can be made up of random numbers, although they are more typically made up of arithmetic or other ordered lists of numbers than random numbers. Geometric sequences, as opposed to arithmetic sequences, vary in that they share a common component rather than a common difference in their composition. To avoid the repetition of the same number being added or deleted for each new phrase, a number is multiplied or divided for each new term that is added.
Other sequences are governed by whole distinct sets of laws.
The numbers are as follows: 1, 1, 2, 3, 5, 8, and so on.
Arithmetic sequences are straightforward, yet they have a variety of practical applications.
13.2: Arithmetic Sequences
Example (PageIndex): After writing the first Term, write the second Term. An Arithmetic Sequence with a Clearly Defined Formula Create an explicit formula for the arithmetic series using the following syntax: ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( It is possible to calculate the common difference by subtracting the first term from the second term. The most noticeable change is referred to as (10). To simplify the formula, substitute the common difference and the first term in the series into it.
Drawing (figure) (PageIndex ) Take part in an exercise program (PageIndex ) For the arithmetic series that follows, provide an explicit formula for it.
Finding the Number of Terms in a Finite Arithmetic Sequence
When determining the number of terms in a finite arithmetic sequence, explicit formulas can be employed to make the determination. Finding the common difference and determining the number of times the common difference must be added to the first term in order to produce the last term of the sequence are both necessary steps. Calculate the total number of terms in a finite arithmetic sequence using the first three terms and the last term as inputs.
 Figure out what the common difference (d) is
 Replace the common difference and the first term in (a n=a 1+d(n–1)) with the common difference and the first term. Make a substitution for the final word in (a n) and solve for (n)
 A.
Figure 1: Finding the Number of Terms in a Finite Arithmetic Sequence using the PageIndex method. The number of terms in the finite arithmetic sequence has to be determined. ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( It is possible to calculate the common difference by subtracting the first term from the second term. (1−8=−7) The most often encountered difference is (7). Substitute the common difference and the first term of the series into the nth term formula, and then simplify the resultant formula.
There are a total of eight terms in the series.
answError: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: (Answer: There are a total of eleven terms in the series.
Solving Application Problems with Arithmetic Sequences
In many application situations, it is typically preferable to utilize an initial term of (a 0) rather than (a 1) as the first term. In order to account for the variation in beginning terms in both cases, we make a little modification to the explicit formula. The following is the formula that we use: The following is an example of (PageIndex ): ProblemSolving using Arithmetic Sequences in Practical Situations Every week, a fiveyearold child is given a monetary allowance of one dollar. His parents offer him a yearly raise of ($2 per week) on top of his current salary.
 The usage of an initial term of (a 0) rather than (a 1) is frequently appropriate in many application difficulties. In order to account for the variation in beginning terms in these situations, we make a little modification to the explicit formulation. The following is the formula that we employ: (PageIndex) is an example of a struct. Using Arithmetic Sequences to Solve Application Problems A weekly stipend of one dollar is given to a fiveyearold kid. A yearly raise of ($2 per week) is promised to him by his family.
 In this case, an arithmetic sequence with an initial term of (1,1) and a common difference of (1,1) may be used to simulate the scenario (2). Let (A) be the amount of the allowance and n denote the number of years after the age of retirement (5). This is what we get if we use the changed explicit formula for an arithmetic sequence: (A r=1+2n)
 By subtracting, we may get the number of years that have passed since the age of (5). (16−5=11) It is our intention to obtain the child’s allowance after eleven years. In order to calculate the child’s allowance at age, substitute (11) into the calculation (16). (A_ =1+2(11)=23) is a prime number. The child’s allowance will be ($23) per week when he or she reaches the age of sixteen.
Take part in an exercise program (PageIndex ) The next week, a lady chooses to go for a tenminute run every day, with the goal of increasing the length of her daily exercise by four minutes each week. Formulate the time she will run after (n) weeks to determine the distance she will cover. How long will her daily run last in a year and a half from now? Answer The formula is (T n=10+4n,) and it will take her a total of (42) minutes to complete. In addition to further teaching and practice with arithmetic sequences, you can access this online resource for that purpose.
recursive formula for nth term of an arithmetic sequence  (a_n=a_ +d) (n≥2) 
explicit formula for nth term of an arithmetic sequence  (a_n=a_1+d(n−1)) 
 When there is a constant difference between any two consecutive terms in an arithmetic sequence, the sequence is called an arithmetic sequence
 The constant difference between two consecutive terms is known as the common difference
 The common difference is the number that is added to any one term of an arithmetic sequence in order to generate the subsequent term. See the following example: (PageIndex)
 The terms of an arithmetic sequence can be obtained by starting with the first term and adding the common difference over and over until the sequence is complete. See Examples ((PageIndex ) and ((PageIndex ) for more information. The recursive formula for an arithmetic series with common difference dd is provided by (a n=a_ +d), and (n2 is the number of steps in the sequence). See the following example: (PageIndex)
 As with any recursive formula, the first term in the series must be specified
 Otherwise, the formula will fail. It is possible to express an explicit formula for an arithmetic series with a common difference d using the formula (a n=a 1+d(n)1). See the following example: (PageIndex)
 When determining the number of words in a sequence, it is possible to apply an explicit formula. Observe the following example: (PageIndex)
 In application situations, we may slightly modify the explicit formula to (a n=a 0+dn). See the following example: (PageIndex)